Nilpotency in Uncountable Groups

Marco Trombetti

Università degli Studi di Napoli Federico II

New Pathways between Group Theory and Model Theory

Mülheim an der Ruhr (Germany) – February 2nd, 2016
Advances in Group Theory and Applications

a non-profit association

www.advgrouptheory.com
Nilpotency in Uncountable Groups

Marco Trombetti

Università degli Studi di Napoli Federico II

New Pathways between Group Theory and Model Theory

Mülheim an der Ruhr (Germany) – February 2nd, 2016
Large Groups

Let \mathcal{X} be a non-trivial class of groups in which every non-trivial group is infinite and let \mathcal{U} be an universe of groups containing \mathcal{X}. Then \mathcal{X} is said to be a class of large groups in the universe \mathcal{U} if the following two properties are satisfied:

- If an \mathcal{U}-group G contains a non-trivial subgroup isomorphic to a group in \mathcal{X}, then G belongs to \mathcal{X}.
- If G is any \mathcal{X}-group and N is a normal subgroup of G, then at least one of the groups N or G/N belongs to \mathcal{X}.
Let \mathcal{X} be a non-trivial class of groups in which every non-trivial group is infinite and let \mathcal{U} be an universe of groups containing \mathcal{X}. Then \mathcal{X} is said to be a class of large groups in the universe \mathcal{U} if the following two properties are satisfied:

- If an \mathcal{U}-group G contains a non-trivial subgroup isomorphic to a group in \mathcal{X}, then G belongs to \mathcal{X}.
- If G is any \mathcal{X}-group and N is a normal subgroup of G, then at least one of the groups N or G/N belongs to \mathcal{X}.

Hereinafter, by tacit agreement, we will assume that every class of groups we speak of will contain the trivial groups.
The class of **groups of infinite rank** is a class of large groups in the universe of all groups.

- Recall that a group G is said to have *finite rank* r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such a property; if such an r does not exist, we will say that the group G has *infinite rank*.
The class of **groups of infinite rank** is a class of large groups in the universe of all groups.

- Recall that a group G is said to have *finite rank* r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such a property; if such an r does not exist, we will say that the group G has *infinite rank*.

The class of **groups of uncountable cardinality** is a class of large groups in the universe of all groups.
Let \mathcal{X} be a class of large groups in the universe \mathcal{U}.

What happens when G is an \mathcal{X}-group whose all proper \mathcal{X}-subgroups satisfy a certain property \mathcal{P}?

Does the group G itself satisfy the property \mathcal{P}?

Do all the proper subgroups of G satisfy the property \mathcal{P}?
In some universes of (generalized) soluble groups, a group G of infinite rank whose all proper subgroups of infinite rank satisfy a fixed property \mathcal{P} is such that also its subgroups of finite rank have the property \mathcal{P}; at least for some relevant choices of the property \mathcal{P}.

Let G be a group of uncountable cardinality \aleph whose all proper subgroups of cardinality \aleph satisfy a certain property \mathcal{X}, do all (proper) subgroups of G satisfy the property \mathcal{X}?
The answer to this question is obstructed: Jónsson groups, namely uncountable groups with all proper subgroups of strictly smaller cardinality, blockade the road.
The answer to this question is obstructed: Jónsson groups, namely uncountable groups with all proper subgroups of strictly smaller cardinality, blockade the road.

The question of the existence of such groups was raised in the relevant paper of Alexander G. Kuroš and Sergeǐ N. Černikov - “Solvable and nilpotent groups” (Russian), *Uspehi Matem. Nauk (N.S.)* 2 (1947).
The answer to this question is obstructed: Jónsson groups, namely uncountable groups with all proper subgroups of strictly smaller cardinality, blockade the road.

The question of the existence of such groups was raised in the relevant paper of Alexander G. Kuroš and Sergeĭ N. Černikov - “Solvable and nilpotent groups” (Russian), Uspehi Matem. Nauk (N.S.) 2 (1947).

In his paper “On a problem of Kurosh, Jonsson groups and applications” (1980), Saharon Shelah proved (without appeal to the continuum hypothesis) that there exists a group with cardinality \aleph_1 whose proper subgroups (and even subsemigroups) have cardinality strictly smaller than \aleph_1.
Simplicity of Jónsson Groups

Let G be a Jónsson group of cardinality \aleph. Then $G/Z(G)$ is a simple group of cardinality \aleph.
Question

Are there uncountable groups of cardinality \aleph without simple homomorphic images of cardinality \aleph whose proper normal subgroups have cardinality strictly less than \aleph?
Question

Are there uncountable groups of cardinality \aleph without simple homomorphic images of cardinality \aleph whose proper normal subgroups have cardinality strictly less than \aleph?

An infinite cardinal k is called regular if it cannot be expressed as the sum of a collection of cardinals $k_i < k$ with $i \in I$, where also the cardinality of I is strictly smaller than that of k.
Question

Are there uncountable groups of cardinality \aleph without simple homomorphic images of cardinality \aleph whose proper normal subgroups have cardinality strictly less than \aleph?

An infinite cardinal k is called **regular** if it cannot be expressed as the sum of a collection of cardinals $k_i < k$ with $i \in I$, where also the cardinality of I is strictly smaller than that of k.

A group G is called **locally graded** if every non-trivial finitely generated subgroup of G has a proper subgroup of finite index.
Theorem

F. de Giovanni and M. T. – 2016

Let \aleph be an uncountable regular cardinal, and let G be a locally graded group of cardinality \aleph which has no simple homomorphic images of cardinality \aleph. If all proper subgroups of G of cardinality \aleph are nilpotent-by-finite, then G itself is nilpotent-by-finite.

F. de Giovanni, M. Martusciello and C. Rainone - 2014: Let G be a group whose all proper countable subgroups are nilpotent-by-finite, then G itself is nilpotent-by-finite.
Theorem

F. de Giovanni and M. T. – *Nilpotency in Uncountable Groups* (2016)

Let G be an uncountable locally graded group of cardinality \aleph which has no simple homomorphic images of cardinality \aleph. If all proper subgroups of cardinality \aleph of G are locally nilpotent, then G itself is locally nilpotent.
Theorems

F. de Giovanni and M. T. – *Nilpotency in Uncountable Groups* (2016)

Let G be an uncountable locally graded group of cardinality \aleph which has no simple homomorphic images of cardinality \aleph. If all proper subgroups of cardinality \aleph of G are locally nilpotent, then G itself is locally nilpotent.

Let G be a group of uncountable cardinality \aleph whose proper subgroups of cardinality \aleph are locally supersoluble. If the commutator subgroup G' of G is locally nilpotent, then G is locally supersoluble.
Theorem

Let \mathfrak{c} be a cardinal number whose cofinality is strictly larger than \aleph_0, and let G be a group of cardinality \mathfrak{c} which has no infinite simple homomorphic images. If all proper subgroups of G of cardinality \mathfrak{c} are nilpotent, then G itself is nilpotent.

The condition on the cofinality of the cardinal number \mathfrak{c} can be dropped out under the assumption of GCH, the generalized continuum hypothesis.
Theorem

F. de Giovanni and M. T. – *Nilpotency in Uncountable Groups* (2016)

Let G be an uncountable group of cardinality \aleph which has no simple non-abelian homomorphic images. If all proper subgroups of cardinality \aleph are soluble with derived length at most k (where k is a fixed positive integer), then G itself is soluble with derived length at most k.
Theorem

F. de Giovanni and M. T. – *Nilpotency in Uncountable Groups* (2016)

Let G be an uncountable group of cardinality \aleph which has no simple non-abelian homomorphic images. If all proper subgroups of cardinality \aleph are soluble with derived length at most k (where k is a fixed positive integer), then G itself is soluble with derived length at most k.

It seems to be an open question whether the hypothesis on the derived length can be dropped out as in the nilpotent case.
Nilpotency in Uncountable Groups

Marco Trombetti

Università degli Studi di Napoli Federico II

New Pathways between Group Theory and Model Theory

Mülheim an der Ruhr (Germany) – February 2nd, 2016