Envelopes and covers for groups

José L. Rodríguez
(work in progress with Sergio Estrada)

UNIVERSIDAD DE ALMERÍA

Groups and Model Theory
“Die Wolfsburg”, Mülheim a.d. Ruhr,
May 30 - June 3, 2011
Aims

- Relate work by Enochs–Rada’05 and Hill’08, and others, on covers of abelian groups, and work by Chachólski–Farjoun–Göbel–Segev’07, Buckner-Dugas’06, Fuchs–Göbel’09, and others, on cellular covers of abelian groups.

- Extend results from module approximation theory to arbitrary groups.

- Extend results of localizations and cellular covers of groups to envelopes and covers of groups.
Aims

- Relate work by Enochs–Rada’05 and Hill’08, and others, on covers of abelian groups, and work by Chachólski–Farjoun–Göbel–Segev’07, Buckner–Dugas’06, Fuchs–Göbel’09, and others, on cellular covers of abelian groups.
- Extend results from module approximation theory to arbitrary groups.
- Extend results of localizations and cellular covers of groups to envelopes and covers of groups.
- Give examples, counterexamples, questions.
Aims

- Relate work by Enochs–Rada’05 and Hill’08, and others, on covers of abelian groups, and work by Chachólski–Farjoun–Göbel–Segev’07, Buckner-Dugas’06, Fuchs–Göbel’09, and others, on cellular covers of abelian groups.
- Extend results from module approximation theory to arbitrary groups.
- Extend results of localizations and cellular covers of groups to envelopes and covers of groups.
- Give examples, counterexamples, questions.
- Applications in homotopy theory (ask for the preprint).
Aims

- Relate work by Enochs–Rada’05 and Hill’08, and others, on covers of abelian groups, and work by Chachólski–Farjoun–Göbel–Segev’07, Buckner-Dugas’06, Fuchs–Göbel’09, and others, on cellular covers of abelian groups.
- Extend results from module approximation theory to arbitrary groups.
- Extend results of localizations and cellular covers of groups to envelopes and covers of groups.
- Give examples, counterexamples, questions.
- Applications in homotopy theory (ask for the preprint).
1 Definitions

2 Envelopes and covers with trivial (co)-Galois groups

3 Examples of envelopes and questions
Contents

1 Definitions

2 Envelopes and covers with trivial (co)-Galois groups

3 Examples of envelopes and questions
Covers of groups

Let \mathcal{F} be a class of groups.

A homomorphism $\pi : G \to H$ is an \mathcal{F}-precover if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

\[
\exists \psi \quad \forall \psi \quad \forall \psi
\]

It is an \mathcal{F}-cover if, furthermore, $\pi \psi = \pi$ implies ψ is an automorphism of G. Then \mathcal{F}-covers are unique up to isomorphism, when they exist.
Covers of groups

Let \mathcal{F} be a class of groups.

A homomorphism $\pi : G \to H$ is an \mathcal{F}-precover if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

$$F \xrightarrow{\exists \psi} \check{\forall} \psi \xrightarrow{\forall \psi} G \xrightarrow{\pi} H$$

It is an \mathcal{F}-cover if, furthermore, $\pi \psi = \pi$ implies ψ automorphism.

coGalois group: $\text{coGal}(\pi) = \text{the group of such automorphisms}$.

Then \mathcal{F}-covers are unique up to isomorphism, when they exist.
Covers of groups

Let \mathcal{F} be a class of groups. A homomorphism $\pi : G \to H$ is an \mathcal{F}-precover if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

It is an \mathcal{F}-cover if, furthermore, $\pi \psi = \pi$ implies ψ automorphism
Covers of groups

Let \mathcal{F} be a class of groups.

A homomorphism $\pi : G \to H$ is an \mathcal{F}-precover if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

$$F \xrightarrow{\exists \psi} G \xrightarrow{\pi} H$$

$$\forall \psi$$

It is an \mathcal{F}-cover if, furthermore, $\pi \psi = \pi$ implies ψ automorphism

$$G \xrightarrow{\psi} G \xrightarrow{\pi} H$$

The coGalois group: $\text{coGal}(\pi) = \text{the group of such automorphisms}$.
Covers of groups

Let \mathcal{F} be a class of groups.

A homomorphism $\pi : G \to H$ is an \textit{\mathcal{F}-precover} if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

$$F \xrightarrow{\exists \psi} G \xrightarrow{\pi} H$$

It is an \textit{\mathcal{F}-cover} if, furthermore, $\pi \psi = \pi$ implies ψ automorphism $G \xrightarrow{\sim} H$

\textbf{coGalois group: } $\text{coGal}(\pi) = \text{the group of such automorphisms}.$

Then \mathcal{F}-covers are \textit{unique up to isomorphism}, when they exist.
Covers of groups

Let \mathcal{F} be a class of groups.

A homomorphism $\pi : G \to H$ is an \mathcal{F}-precover if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\pi_* : \text{Hom}(F, G) \to \text{Hom}(F, H)$, i.e.

$$\exists \psi$$

$$\forall \psi$$

It is an \mathcal{F}-cover if, furthermore, $\pi \psi = \pi$ implies ψ automorphism

coGalois group: $\text{coGal}(\pi) = \text{the group of such automorphisms}$. Then \mathcal{F}-covers are unique up to isomorphism, when they exist.
A homomorphism $\eta : H \rightarrow G$ is an \mathcal{F}-preenvelope if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\eta_* : \text{Hom}(G, F) \rightarrow \text{Hom}(H, F)$, i.e.

$$H \xrightarrow{\eta} G \xrightarrow{\eta_*} F$$
Envelopes of groups

A homomorphism $\eta : H \rightarrow G$ is an \mathcal{F}-preenvelope if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\eta^* : \text{Hom}(G, F) \twoheadrightarrow \text{Hom}(H, F)$, i.e.

$$
\begin{array}{c}
H \\
\eta \\
\searrow
downarrow
\forall \psi
\searrow
F
\end{array}
$$

It is an \mathcal{F}-envelope if, furthermore, $\psi \eta = \eta$ implies ψ automorphism

Galois group: $\text{Gal}(\pi) = \text{the group of such automorphisms}$. Then \mathcal{F}-envelopes are unique up to isomorphism, when they exist.
A homomorphism $\eta : H \to G$ is an \mathcal{F}-preenvelope if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\eta_* : \text{Hom}(G, F) \to \text{Hom}(H, F)$, i.e.

$$
\begin{array}{c}
H \xrightarrow{\eta} G \\
\downarrow \forall \psi \quad \exists \tilde{\psi} \\
F
\end{array}
$$

It is an \mathcal{F}-envelope if, furthermore, $\psi \eta = \eta$ implies ψ automorphism

$$
\begin{array}{c}
H \xrightarrow{\eta} G \\
\downarrow \eta \\
\downarrow \psi \\
\downarrow \psi \\
G
\end{array}
$$
Envelopes of groups

A homomorphism $\eta : H \to G$ is an \mathcal{F}-preenvelope if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\eta_* : \text{Hom}(G, F) \to \text{Hom}(H, F)$, i.e.

$$H \xrightarrow{\eta} G \quad \forall \psi \quad \exists \bar{\psi} \quad F$$

It is an \mathcal{F}-envelope if, furthermore, $\psi \eta = \eta$ implies ψ automorphism

$$H \xrightarrow{\eta} G \xrightarrow{\psi} G$$

Galois group: $\text{Gal}(\pi) = \text{the group of such automorphisms}$.
A homomorphism \(\eta : H \to G \) is an \(\mathcal{F} \)-preenvelope if \(G \in \mathcal{F} \) and for all \(F \in \mathcal{F} \), it induces a surjection \(\eta_* : \text{Hom}(G, F) \to \text{Hom}(H, F) \), i.e.

\[
\begin{array}{c}
H \xrightarrow{\eta} G \\
\downarrow \forall \psi \\
F
\end{array}
\]

It is an \(\mathcal{F} \)-envelope if, furthermore, \(\psi \eta = \eta \) implies \(\psi \) automorphism

\[
\begin{array}{c}
H \xrightarrow{\eta} G \\
\downarrow \eta \\
\downarrow \psi \\
G
\end{array}
\]

Galois group: \(\text{Gal}(\pi) = \) the group of such automorphisms.

Then \(\mathcal{F} \)-envelopes are unique up to isomorphism, when they exist.
A homomorphism $\eta : H \to G$ is an \mathcal{F}-preenvelope if $G \in \mathcal{F}$ and for all $F \in \mathcal{F}$, it induces a surjection $\eta_* : \text{Hom}(G, F) \to \text{Hom}(H, F)$, i.e.

$$H \xrightarrow{\eta} G$$

$$\forall \psi \exists \widetilde{\psi}$$

$$F$$

It is an \mathcal{F}-envelope if, furthermore, $\psi \eta = \eta$ implies ψ automorphism

$$H \xrightarrow{\eta} G$$

$$\eta$$

$$\psi$$

$$G$$

Galois group: $\text{Gal}(\pi) =$ the group of such automorphisms.

Then \mathcal{F}-envelopes are unique up to isomorphism, when they exist.
1 Definitions

2 Envelopes and covers with trivial (co)-Galois groups

3 Examples of envelopes and questions
Enochs–Rada’05, and Hill’06 considered torsion free covers of abelian groups having trivial co-Galois group. More generally:

Theorem (1)

Let \mathcal{F} be any class of groups. Let $\pi : G \to H$ be an \mathcal{F}-cover. Then TFAE:

(a) $\text{coGal}(\pi) = 1$.

(b) $\pi : G \to H$ is a cellular cover, i.e. $\pi_* : \text{Hom}(G, G) \cong \text{Hom}(G, H)$.
Trivial co-Galois groups

Enochs–Rada’05, and Hill’06 considered torsion free covers of abelian groups having trivial co-Galois group. More generally:

Theorem (1)

Let \mathcal{F} be any class of groups. Let $\pi : G \to H$ be an \mathcal{F}-cover. Then TFAE:

(a) $\text{coGal}(\pi) = 1$.

(b) $\pi : G \to H$ is a cellular cover, i.e. $\pi_* : \text{Hom}(G, G) \cong \text{Hom}(G, H)$.

- Torsion-free cellular covers have been studied by Buckner–Dugas’06, Farjoun–Göbel–Segev’07.
- Arbitrary cellular covers of groups have been studied during the last decades (Bousfield’77, Farjoun’97, R-Scherer’01, Farjoun–Göbel–Shelah–Segev’07, Göbel–R–Strüngmann’10, ...).
Enochs–Rada’05, and Hill’06 considered torsion free covers of abelian groups having trivial co-Galois group. More generally:

Theorem (1)

Let \mathcal{F} be any class of groups. Let $\pi : G \to H$ be an \mathcal{F}-cover. Then TFAE:

(a) $\text{coGal}(\pi) = 1$.

(b) $\pi : G \to H$ is a cellular cover, i.e. $\pi_* : \text{Hom}(G, G) \cong \text{Hom}(G, H)$.

- Torsion-free cellular covers have been studied by Buckner–Dugas’06, Farjoun–Göbel–Segev’07.
- Arbitrary cellular covers of groups have been studied during the last decades (Bousfield’77, Farjoun’97, R-Scherer’01, Farjoun–Göbel–Shelah–Segev’07, Göbel–R–Strüngmann’10, ...).
Proof of Theorem 1:

(a) implies (b): Suppose \(\text{coGal}(\pi) = 1 \).

- Then \(K = \text{Ker}\,\pi \) is central in \(G \). Indeed, for \(x \in K \) consider conjugation \(c_x : G \to G \) by \(c_x(y) = xyx^{-1} \). Then, \(\pi c_x = \pi \), hence \(c_x = \text{Id}_G \).

- \(\pi_\ast \) is bijective: Let \(\psi_1, \psi_2 : G \to G \) such that \(\pi \psi_1 = \pi \psi_2 \). Define the map \(\psi : G \to G \) by

\[
\psi(x) = x\psi_1(x)\psi_2(x)^{-1}.
\]

This is a well defined homomorphism since \(\psi_1(x)\psi_2(x)^{-1} \in K \) is central. Now \(\psi\pi = \pi \), hence \(\pi = \text{Id}_G \) and we get \(\psi_1 = \psi_2 \).
Proof of Theorem 1:

(a) implies (b): Suppose $\text{coGal}(\pi) = 1$.

- Then $K = \text{Ker} \pi$ is central in G. Indeed, for $x \in K$ consider conjugation $c_x : G \to G$ by $c_x(y) = xyx^{-1}$. Then, $\pi c_x = \pi$, hence $c_x = \text{Id}_G$.

- π_\ast is bijective: Let $\psi_1, \psi_2 : G \to G$ such that $\pi \psi_1 = \pi \psi_2$. Define the map $\psi : G \to G$ by

$$\psi(x) = x \psi_1(x) \psi_2(x)^{-1}.$$

This is a well defined homomorphism since $\psi_1(x) \psi_2(x)^{-1} \in K$ is central. Now $\psi \pi = \pi$, hence $\pi = \text{Id}_G$ and we get $\psi_1 = \psi_2$.

Is every envelope with trivial Galois group a localization? We do not know.

Theorem (2)

Let \mathcal{F} be any class of groups. Let $\eta : H \to G$ be an \mathcal{F}-preenvelope. Assume that either H abelian or G nilpotent. Then TFAE:

(a) $\Gal(\eta) = 1$.

(b) $\eta : H \to G$ is a localization, i.e. $\eta^* : \Hom(G, G) \cong \Hom(H, G)$.
Is every envelope with trivial Galois group a localization? We do not know.

Theorem (2)

Let \mathcal{F} be any class of groups. Let $\eta : H \to G$ be an \mathcal{F}-preenvelope. Assume that either H abelian or G nilpotent. Then TFAE:

(a) $\text{Gal}(\eta) = 1$.

(b) $\eta : H \to G$ is a localization, i.e. $\eta^* : \text{Hom}(G, G) \cong \text{Hom}(H, G)$.

Question

What happens if we assume H nilpotent?
Is every envelope with trivial Galois group a localization? We do not know.

Theorem (2)

Let \mathcal{F} be any class of groups. Let $\eta : H \to G$ be an \mathcal{F}-preenvelope. Assume that either H abelian or G nilpotent. Then TFAE:

(a) $\text{Gal}(\eta) = 1$.

(b) $\eta : H \to G$ is a localization, i.e. $\eta^* : \text{Hom}(G, G) \cong \text{Hom}(H, G)$.

Question

What happens if we assume H nilpotent?
(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
For a fixed $y \in G$ define the map

$$\xi(x) = x[\psi_1(x)\psi_2(x)^{-1}, y].$$
Proof of Theorem 2

(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
For a fixed $y \in G$ define the map

$$\xi(x) = x[\psi_1(x)\psi_2(x)^{-1}, y].$$

This is a homomorphism such that $\xi \eta = \eta$, hence $\xi = ld_G$.
This says that $\psi_1(x)\psi_2(x)^{-1}$ is central in G.
Proof of Theorem 2

(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
For a fixed $y \in G$ define the map

$$\xi(x) = x[\psi_1(x)\psi_2(x)^{-1}, y].$$

This is a homomorphism such that $\xi \eta = \eta$, hence $\xi = Id_G$.
This says that $\psi_1(x)\psi_2(x)^{-1}$ is central in G. Hence the map

$$\xi'(x) = x\psi_1(x)\psi_2(x)^{-1}$$

is a homomorphism such that $\xi' \eta = \eta$.
Proof of Theorem 2

(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
For a fixed $y \in G$ define the map

$$\xi(x) = x[\psi_1(x)\psi_2(x)^{-1}, y].$$

This is a homomorphism such that $\xi \eta = \eta$, hence $\xi = Id_G$.
This says that $\psi_1(x)\psi_2(x)^{-1}$ is central in G. Hence the map

$$\xi'(x) = x\psi_1(x)\psi_2(x)^{-1}$$

is a homomorphism such that $\xi' \eta = \eta$.
Thus $\xi' = Id_G$ and $\psi_1 = \psi_2$ as desired.
(a) implies (b)
Suppose G is nilpotent of nilp. class 2. Then $[x, y]$ is central for all $x, y \in G$.
Let ψ_1 and ψ_2 such that $\psi_1 \eta = \psi_2 \eta$.
For a fixed $y \in G$ define the map

$$
\xi(x) = x[\psi_1(x)\psi_2(x)^{-1}, y].
$$

This is a homomorphism such that $\xi \eta = \eta$, hence $\xi = lG$.
This says that $\psi_1(x)\psi_2(x)^{-1}$ is central in G. Hence the map

$$
\xi'(x) = x\psi_1(x)\psi_2(x)^{-1}
$$

is a homomorphism such that $\xi' \eta = \eta$.
Thus $\xi' = lG$ and $\psi_1 = \psi_2$ as desired.
Localizations of groups

Localization of groups have been studied by many authors, specially during the last decade. Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \mathbb{Z} are of special interest.

- Localizations $\eta : \mathbb{Z} \to A$ are known as E-rings (Schultz’73). These are commutative rings A with 1 with only inner additive endomorphisms.
Localization of groups have been studied by many authors, specially during the last decade. Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \mathbb{Z} are of special interest.

- Localizations $\eta : \mathbb{Z} \rightarrow A$ are known as E-rings (Schultz’73). These are commutative rings A with 1 with only inner additive endomorphisms.
- Faticoni’87: use Corner’s methods to construct of E-rings of size $< 2^{\aleph_0}$ inside the adic integers.
Localization of groups have been studied by many authors, specially during the last decade. Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \mathbb{Z} are of special interest.

- Localizations $\eta : \mathbb{Z} \rightarrow A$ are known as E-rings (Schultz’73). These are commutative rings A with 1 with only inner additive endomorphisms.
- Faticoni’87: use Corner’s methods to construct of E-rings of size $< 2^{\aleph_0}$ inside the adic integers.
- Dugas–Mader–Vinsonhaler’87 used Shelah’s black box to construct large E-rings.
Localizations of groups

Localization of groups have been studied by many authors, specially during the last decade. Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \(\mathbb{Z} \) are of special interest.

- Localizations \(\eta : \mathbb{Z} \to A \) are known as \(E \)-rings (Schultz’73). These are commutative rings \(A \) with 1 with only inner additive endomorphisms.
- Faticoni’87: use Corner’s methods to construct of \(E \)-rings of size \(< 2^{\aleph_0} \) inside the adic integers.
- Dugas–Mader–Vinsonhaler’87 used Shelah’s black box to construct large \(E \)-rings.
- Casacuberta–R–Tai’98: Homotopical localizations of \(K(\mathbb{Z}, n) \) are of the form \(K(A, n) \) where \(A \) ranges over the class of \(E \)-rings.
Localizations of groups

Localization of groups have been studied by many authors, specially during the last decade. Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \mathbb{Z} are of special interest.

- Localizations $\eta: \mathbb{Z} \to A$ are known as E-rings (Schultz’73). These are commutative rings A with 1 with only inner additive endomorphisms.
- Faticoni’87: use Corner’s methods to construct of E-rings of size $< 2^{\aleph_0}$ inside the adic integers.
- Dugas–Mader–Vinsonhaler’87 used Shelah’s black box to construct large E-rings.
- Casacuberta–R–Tai’98: Homotopical localizations of $K(\mathbb{Z}, n)$ are of the form $K(A, n)$ where A ranges over the class of E-rings.
- Casacuberta–Gutiérrez’05: stable homotopical localizations of $H\mathbb{Z}$ are of the form HA where A ranges over the class of E-rings.
Localizations of groups

Localization of groups have been studied by many authors, specially during the last decade.
Quite of algebraic structure is preserved (e.g. rings, modules, algebras).

Localizations of \mathbb{Z} are of special interest.

- Localizations $\eta : \mathbb{Z} \rightarrow A$ are known as E-rings (Schultz’73). These are commutative rings A with 1 with only inner additive endomorphisms.
- Faticoni’87: use Corner’s methods to construct of E-rings of size $< 2^{\aleph_0}$ inside the adic integers.
- Dugas–Mader–Vinsonhaler’87 used Shelah’s black box to construct large E-rings.
- Casacuberta–R–Tai’98: *Homotopical localizations of $K(\mathbb{Z}, n)$ are of the form $K(A, n)$ where A ranges over the class of E-rings.*
- Casacuberta–Gutiérrez’05: stable homotopical localizations of $H\mathbb{Z}$ are of the form HA where A ranges over the class of E-rings.
Contents

1 Definitions

2 Envelopes and covers with trivial (co)-Galois groups

3 Examples of envelopes and questions
We are now interested on envelopes of \mathbb{Z}, i.e. inclusions $\eta : \mathbb{Z} \hookrightarrow G$ inducing a surjection $\eta_* : \text{Hom}(G, G) \twoheadrightarrow \text{Hom}(\mathbb{Z}, G)$, and satisfying $\psi \eta = \eta$ implies ψ iso.
(Note this is an \mathcal{F}-envelope where $\mathcal{F} = \{ G \}$.)
These are non necessarily rings, nor abelian.

Example

Consider the infinite diedral group $G = \langle x, y : y^2 = 1, x^y = x^{-1} \rangle$
Then, $\langle x \rangle \hookrightarrow G$ is an envelope with Galois group C_2.

Plan (Göbel–R): Use Corner’s method or black boxes to construct large envelopes of \mathbb{Z} with a prescribed Galois group.
Some finite envelopes

- $C_{p^r} \leftarrow C_{p^s}$ with $s > r$.
- $C_{p^r} = \mathbb{Z}/p^r \leftarrow \mathbb{Z}(p^\infty)$ (This is the injective hull).
- $C_3 \leftarrow S_3$
- $C_p \leftarrow D_{2p}$, for every prime p.
- $A_5 \rightarrow S_5$ is an envelope (recall $A_5 \leftarrow A_6$ is a localization).
- $G = \langle x, y : x^8 = 1, y^2 = 1, x^y = x^5 \rangle$. The cyclic group $\langle x^4 \rangle$ of order two embeds into G as an envelope, although $\langle y \rangle$ does not. This cannot happen with localizations.
Some finite envelopes

- $C_{p^r} \hookrightarrow C_{p^s}$ with $s > r$.
- $C_{p^r} = \mathbb{Z}/p^r \hookrightarrow \mathbb{Z}(p^\infty)$ (This is the injective hull).
- $C_3 \hookrightarrow S_3$
- $C_p \hookrightarrow D_{2p}$, for every prime p.
- $A_5 \rightarrow S_5$ is an envelope (recall $A_5 \hookrightarrow A_6$ is a localization).
- $G = \langle x, y : x^8 = 1, y^2 = 1, x^y = x^5 \rangle$. The cyclic group $\langle x^4 \rangle$ of order two embeds into G as an envelope, although $\langle y \rangle$ does not. This cannot happen with localizations.
Some finite envelopes

Have adapted a program written by Tonks’00, designed to look for a counterexample to the following

Open problem (Farjoun): $H \leftrightarrow G$ localization of finite groups. H nilpotent \Rightarrow G nilpotent?
Some finite envelopes

Have adapted a program written by Tonks’00, designed to look for a counterexample to the following

Open problem (Farjoun): $H \hookrightarrow G$ localization of finite groups. H nilpotent $\Rightarrow G$ nilpotent?

True for nilp. class 2 (Casacuberta’99, Libman’00) and nilp. class 3 (Aschbacher’04).

Unknown in general if H is a finite p-group.
Some finite envelopes

Have adapted a program written by Tonks’00, designed to look for a counterexample to the following

Open problem (Farjoun): $H \hookrightarrow G$ localization of finite groups. H nilpotent $\Rightarrow G$ nilpotent?

True for nilp. class 2 (Casacuberta’99, Libman’00) and nilp. class 3 (Aschbacher’04).

Unknown in general if H is a finite p-group.

Question

When an inclusion $H \hookrightarrow G$ of finite p-groups is an envelope?
Some finite envelopes

Have adapted a program written by Tonks’00, designed to look for a counterexample to the following

Open problem (Farjoun): \(H \hookrightarrow G \) localization of finite groups. \(H \) nilpotent \(\Rightarrow \) \(G \) nilpotent?

True for nilp. class 2 (Casacuberta’99, Libman’00) and nilp. class 3 (Aschbacher’04).

Unknown in general if \(H \) is a finite \(p \)-group.

Question

When an inclusion \(H \hookrightarrow G \) of finite \(p \)-groups is an envelope?
Envelopes of simple groups

R–Scherer–Thevenaz’02: Considered **rigid components** of finite simple groups, as those determined by the equivalence relation given by zigzags of localizing inclusions.

Parker–Saxl’06: concluded successfully our previous work and showed that all (non-abelian) finite simple groups lie in the same rigid component, except $PSp_4(p^{2c})$, p odd prime, $c > 0$, which are isolated.
R–Scherer–Thevenaz’02: Considered rigid components of finite simple groups, as those determined by the equivalence relation given by zigzags of localizing inclusions.

Parker–Saxl’06: concluded successfully our previous work and showed that all (non-abelian) finite simple groups lie in the same rigid component, except $PSp_4(p^{2c})$, p odd prime, $c > 0$, which are isolated.

Problem

Does the weak rigid component, defined allowing zigzags of envelopes, contains these isolated groups?
R–Scherer–Thevenaz’02: Considered rigid components of finite simple groups, as those determined by the equivalence relation given by zigzags of localizing inclusions.

Parker–Saxl’06: concluded successfully our previous work and showed that all (non-abelian) finite simple groups lie in the same rigid component, except $PSp_4(p^{2c})$, p odd prime, $c > 0$, which are isolated.

Problem
Does the weak rigid component, defined allowing zigzags of envelopes, contains these isolated groups?
To attack this problem we have the following criterium (which extends a result by R–Scherer–Thevenaz’02):

Theorem (3)

Let $\varphi : H \hookrightarrow G$ be a inclusion of finite simple groups. Then φ is an envelope \iff

1. Every automorphism of H extends to an automorphism of G.
2. Any subgroup of G isomorphic to H is conjugate to H in $\text{Aut}(G)$.

Furthermore, $\text{Gal}(\varphi) = \text{Cen}_G(H)$.

Need another result about envelopes into alternating groups A_n.
Large envelopes of simple groups

Göbel–R–Shelah'02, Göbel–Shelah'02: Every finite simple group admits arbitrarily large localizations.

Which finite simple groups admit arbitrarily large envelopes with a prescribed Galois group?
Göbel–R–Shelah’02, Göbel–Shelah’02:

Every finite simple group admits arbitrarily large localizations.

Problem

Which finite simple groups admit arbitrarily large envelopes with a prescribed Galois group?
Göbel–R–Shelah’02, Göbel–Shelah'02:
Every finite simple group admits arbitrarily large localizations.

Problem
Which finite simple groups admit arbitrarily large envelopes with a prescribed Galois group?
THANK YOU!

(I include here some extra slides not presented at the talk)
If $\pi : G \to H$ is an \mathcal{F}-precover, and consider the epi-mono factorization

$$G \to \text{Im} (\pi) \hookrightarrow H$$

then $G \to \text{Im} (\pi)$ is also an \mathcal{F}-precover, with the same co-Galois group.
If $\pi : G \to H$ is an \mathcal{F}-precover, and consider the epi-mono factorization

$$G \to \text{Im} (\pi) \hookrightarrow H$$

then $G \to \text{Im} (\pi)$ is also an \mathcal{F}-precover, with the same co-Galois group.

Have similar result for preenvelopes.
If $\pi : G \to H$ is an \mathcal{F}-precover, and consider the epi-mono factorization

$$G \to \text{Im} (\pi) \hookrightarrow H$$

then $G \to \text{Im} (\pi)$ is also an \mathcal{F}-precover, with the same co-Galois group.

Have similar result for preenvelopes.

Hence we can study independently:

- Monomorphic (pre)covers, and surjective (pre)envelopes.
- Surjective (pre)covers, and monomorphic (pre)envelopes.
If $\pi : G \to H$ is an \mathcal{F}-precover, and consider the epi-mono factorization

$$G \to \text{Im} (\pi) \hookrightarrow H$$

then $G \to \text{Im} (\pi)$ is also an \mathcal{F}-precover, with the same co-Galois group.

Have similar result for preenvelopes.

Hence we can study independently:

- Monomorphic (pre)covers, and surjective (pre)envelopes.
- Surjective (pre)covers, and monomorphic (pre)envelopes.
Relation with socles and radicals

Fix a group G (or more generally a class of groups \mathcal{F})

- The G-socle $S_G(H)$ of a group H is defined as the subgroup generated by the images of all homomorphisms $G \to H$.

- The G-radical $R_G(H) := \bigcup_i R^i$ where
 - $R^0 = S_G(H)$, $R^{i+1}/R^i = S_G(H/R^i)$
 - $R^\lambda = \bigcup_\alpha R^\alpha$ if λ is a limit ordinal.

\rightsquigarrow G-nulification $H \mapsto H/R_GH$.

Bousfield’77, Farjoun’97:
HAVE ANALOGUE CONSTRUCTIONS IN HOMOTOPY THEORY
Relation with socles and radicals

Fix a group G (or more generally a class of groups \mathcal{F})

- The G-socle $S_G(H)$ of a group H is defined as the subgroup generated by the images of all homomorphisms $G \to H$.
- The G-radical $R_G(H) := \bigcup_i R^i$ where
 - $R^0 = S_G(H)$, $R^{i+1}/R^i = S_G(H/R^i)$
 - $R^\lambda = \bigcup_\alpha R^\alpha$ if λ is a limit ordinal.

\leadsto G-nullification $H \mapsto H/R_G H$.

Bousfield’77, Farjoun’97:
HAVE ANALOGUE CONSTRUCTIONS IN HOMOTOPY THEORY
More generally, fix a family \mathcal{E} of epimorphisms (e.g. $\mathcal{E} = \{G \to 1\}$):

- The \mathcal{E}-socle of a group H is the normal subgroup generated by $\psi(K)$ where $\psi : E \to H$, $K = \text{Ker}(\varphi)$ and $\varphi : E \to E'$ is in \mathcal{E}.

- The \mathcal{E}-radical is defined inductively as before.

\mathcal{E}-epireflection $H \to H/R_{\mathcal{E}}H$

This is localization with respect to \mathcal{E}.

Proposition
Let \(\mathcal{F} \) be any class of groups. TFAE

a) \(G \to H \) is an \(\mathcal{F} \)-precover.

b) \(G \to H \) is an \(\mathcal{F} \)-cover having unique liftings.

c) \(G \) is the \(\mathcal{F} \)-socle of \(H \).

Proposition
Let \(\mathcal{F} \) be any class of groups. TFAE

a) \(H \to G \) is an \(\mathcal{F} \)-preenvelope.

b) \(H \to G \) is an \(\mathcal{F} \)-envelope having unique liftings.

c) \(H \to G \) is the \(\mathcal{E} \)-epireflection, where \(\mathcal{E} \) is the family of epimorphisms onto \(F \in \mathcal{F} \).
Relation with socles and radicals

Proposition

Let \mathcal{F} be any class of groups. TFAE

a) $G \rightarrow H$ is an \mathcal{F}-precover.

b) $G \rightarrow H$ is an \mathcal{F}-cover having unique liftings.

c) G is the \mathcal{F}-socle of H.

Proposition

Let \mathcal{F} be any class of groups. TFAE

a) $H \rightarrow G$ is an \mathcal{F}-preenvelope.

b) $H \rightarrow G$ is an \mathcal{F}-envelope having unique liftings.

c) $H \rightarrow G$ is the \mathcal{E}-epireflection, where \mathcal{E} is the family of epimorphisms onto $F \in \mathcal{F}$.
Fix a group G. Let $C(G)$ be the class of G-cellular groups. This is the smallest class of groups which contains G and it is closed under arbitrary colimits.

Theorem (R-Scherer'01)

The inclusion functor $C(G) \hookrightarrow \text{Groups}$ admits a right adjoint

$$\text{Cell}_G : \text{Groups} \to C(G).$$

This gives a G-cellular cover for every group H.

$$\pi : \text{Cell}_G H \to H$$

(i.e. $\pi_* : \text{Hom}(F, \text{Cell}_G H) \cong \text{Hom}(F, H)$, for all G-cellular groups F).
Let M be a CW-complex. Bousfield’77, Farjoun’97 define M-cellularization for every space X.

Theorem (R-Scherer’01)

If $M = M(G, 1)$ is 2-dim Moore space then

$$\pi_1(\text{Cell}_M K(H, 1)) \simeq \text{Cell}_G H$$
Enochs’81: Existence of special \mathcal{F}-precovers of modules, under certain conditions.

Recall π is a special \mathcal{F}-precover if $\text{Ext}(F, \ker \pi) = 0$, for all $F \in \mathcal{F}$.

We extend this to arbitrary groups G “cotorsion” theories for groups. Use Quillen’s small object argument from Hirschorn’97.

Definition

Let G be any group, and $\kappa = |G|$. Let \aleph be an infinite regular cardinal $\geq \kappa^+$. Let I be a set of representatives of extensions $j : N \hookrightarrow M$ by G, with $|M| < \aleph$.

Define the class of G-filtered groups as the class of I-cell complexes.
G-filtered groups

Enochs’81: Existence of special \mathcal{F}-precovers of modules, under certain conditions.

Recall π is a special \mathcal{F}-precover if $\text{Ext}(F, \ker \pi) = 0$, for all $F \in \mathcal{F}$.

We extend this to arbitrary groups \leadsto “cotorsion” theories for groups. Use Quillen’s small object argument from Hirschorn’97.

Definition

Let G be any group, and $\kappa = |G|$. Let \aleph be an infinite regular cardinal $\geq \kappa^+$. Let I be a set of representatives of extensions $j : N \hookrightarrow M$ by G, with $|M| < \aleph$.

Define the class of G-filtered groups as the class of I-cell complexes.
Existence of \mathcal{F}-covers

Suppose that \mathcal{F} is the class of I-cell complexes, for some family $I = I_0 \cup J$ where I_0 is a set of monomorphisms, and J is a class of epimorphisms.

Theorem

- Every group H admits an \mathcal{F}-precover.
- If J includes all epimorphisms $g : F \to F'$ with $F' \leq F$, and $F \in \mathcal{F}$, then each group admits an \mathcal{F}-cover.
- If J includes the epimorphisms of the form $B \star_A B \to B$ for every inclusion $A \hookrightarrow B$ in I_0, then each group H admits a cellular \mathcal{F}-cover.
Suppose that \mathcal{F} is the class of I-cell complexes, for some family $I = I_0 \cup J$ where I_0 is a set of monomorphisms, and J is a class of epimorphisms.

Theorem

- Every group H admits an \mathcal{F}-precover.
- If J includes all epimorphisms $g : F \to F'$ with $F' \leq F$, and $F \in \mathcal{F}$, then each group admits an \mathcal{F}-cover.
- If J includes the epimorphisms of the form $B \ast_A B \to B$ for every inclusion $A \hookrightarrow B$ in I_0, then each group H admits a cellular \mathcal{F}-cover.
Corollary

If F is closed under well ordered colimits, then every group H admits an F-cover.

Corollary

If F is closed under taking free products of coequalizers of F-morphisms, or equivalently closed under arbitrary colimits, then every group has a cellular F-cover.